Microstructure, Deformation Characteristics and Energy Analysis of Mudstone under Water Absorption Process

Author:

Feng Zheyuan1,Xu Qi1,Luo Xinyu1,Huang Ruyu2,Liao Xin3,Tang Qiang1

Affiliation:

1. School of Rail Transportation, Soochow University, Xiangcheng District, Suzhou 215131, China

2. Tonggu Human Resources and Social Security Bureau, Yichun 336200, China

3. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract

In geological engineering, a series of safety problems caused by expansive mudstone are common, such as slope instability and roadbed up-arch. In this paper, the mineral composition of mudstones in the Xining area was analyzed by X-ray diffraction (XRD), and the microstructural and morphological changes of mudstones after water absorption were observed by scanning electron microscopy (SEM) test to analyze the internal factors and microstructural evolution patterns of water absorption and swelling of mudstones. Based on the microstructural units, the mudstones were defined into two categories, one is N-type mudstone with flat sheet-like stromatolite units, and the other is SN-type mudstone with more clastic particle units. Water absorption experiments were conducted on the rock samples to study the microstructure of these two types of mudstones under different water absorption conditions. The pore characteristics of the mudstones were analyzed by using Image-Pro Plus to reveal the water absorption mechanism. The results show that the pore area of N-type mudstone is smaller, as well as the distribution of pore diameter. The pore area of N-type mudstone develops rapidly, in the early stage of water absorption, lots of pores are produced, and the pore area of SN-type mudstone shows an overall decreasing trend. The pore area and the number of SN-type mudstones are at a low level after full water absorption. Under the condition of full immersion, water enters the pores rapidly and soluble salts are dissolved in large quantities. The change of water absorption rate of mudstone with time can be divided into the stage of sudden increase, decrease and stability of water absorption rate. Then, based on the stress theory, the relationship between the macroscopic expansion process and the microstructure of mudstone was analyzed. Finally, the energy basis of mudstone water absorption is discussed. In the swelling of mudstone, the energy gradually turns into swelling strain energy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province for Excellent Young Scholars

Natural Science Foundation of Sichuan Province for Young Scholars

Bureau of Housing and Urban-Rural Development of Suzhou

Bureau of Geology and Mineral Exploration of Jiangsu

China Tiesiju Civil Engineering Group

CCCC First Highway Engineering Group Company Limited

CCCC Tunnel Engineering Company Limited

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3