Study on Surrounding Rock Control and Support Stability of Ultra-Large Height Mining Face

Author:

Wang Sheng1,Li Xuelong1ORCID,Qin Qizhi12

Affiliation:

1. State Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China

2. Yankuang Group Co., Ltd., Zoucheng 273500, China

Abstract

Surrounding rock control and support stability in the process of coal seam mining in ultra-large height mining face are the key to normal mine operation. In this study, the roof movement and deformation of an ultra-large height mining face are analyzed, and the working resistance of the ultra-large height mining face is obtained by introducing the equivalent immediate roof. By analyzing the coal wall spalling, the multiple positions of the spalling and the required support force of the support are obtained. At the same time, ultra-large height supports are more prone to instability problems. In this study, the stability of the ultra-large height supports was analyzed by establishing a mechanical model. The results show that: 1. The overturning limit angle of support has a hyperbolic relationship with the center of gravity. 2. Under the condition of ultra-large height, the increase in the base width of the bracket significantly improves the stability of the supports. 3. The sliding limit angle of support is positively correlated with the support load and the friction coefficient between the support and the floor. The above conclusions can provide guidance on the selection of supports and the adoption of measures to enhance the stability of the supports during use under ultra-large height conditions. The working resistance of the ultra-large height supports in the 108 mining face of the Jinjitan Coal Mine was monitored. The monitoring results show that: The average resistance of the supports is 22.6 MPa. The selected supports can meet the stability requirements of the working face support. The frequency of mining resistance in 0~5 MPa accounts for 28.38%, which indicates that some supports are insufficient for the initial support force during the moving process. Furthermore, the stability of the supports can be enhanced by adjusting the moving process. This study provides a reference for the selection of supports in ultra-large height mining faces and proposes measures to enhance the stability of the supports, which provides guidance for the safe mining of coal in ultra-large height mining faces.

Funder

National Natural Science Foundation of China

Taishan Scholars Project

Key R&D Plan of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3