Research on Theory and Technology of Floor Heave Control in Semicoal Rock Roadway: Taking Longhu Coal Mine in Qitaihe Mining Area as an Example

Author:

Zhou Xuming12,Wang Sheng2ORCID,Li Xuelong12ORCID,Meng Jingjing3,Li Zhen2,Zhang Linhan2,Pu Dongdong4,Wang Longkang5ORCID

Affiliation:

1. 1 Mine Disaster Prevention and Control-Ministry of State Key Laboratory Breeding Base Shandong University of Science and Technology Qingdao 266590 China sdust.edu.cn

2. 2 College of Energy and Mining Engineering Shandong University of Science and Technology Qingdao 266590 China sdust.edu.cn

3. 3 Department of Civil Environmental and Natural Resources Engineering Luleå University of Technology Luleå Sweden ltu.se

4. 4 Zhengmei Group Engineering Technology Research Institute Zhengzhou 450000 China

5. 5 China Center for Information Industry Development Beijing 100048 China

Abstract

Abstract As one of the most common disasters in deep mine roadway, floor heave has caused serious obstacles to mine transportation and normal production activities. The third section winch roadway in the third mining area of Qitaihe Longhu coal mine has a serious floor heave due to the large buried depths of the roadway and the semicoal rock roadway, and the maximum floor heave is 750 mm. For the problem of floor stability, this paper establishes a mechanical model to analyze the stability of roadway floor heave by analogy with the basement heave of deep foundation pit. It provides a model reference for analyzing the problem of roadway floor heave. Aiming at the problem of roadway floor heave in Longhu coal mine, the roadway model is established by using FLAC3D, and the roadway model after support is established according to the on-site support measures. Through the analysis of the distribution of roadway plastic area, stress nephogram, and displacement field simulation results, the results show that the maximum displacement of roadway roof and floor after support is reduced by 15% and 23%, but the maximum floor heave is still 770 mm, which is close to the measured floor heave of roadway. In order to solve the problem of roadway floor heave and integrate economic factors, this paper puts forward three support optimization schemes, simulates the support effect of each scheme, and finally determines that scheme 3 is the best support optimization scheme. Compared with that under the original support, the amount of floor heave is reduced by 81%, and the final amount of floor heave is 150 mm, which can meet the requirements of roadway floor deformation. The results provide a scheme and guidance for roadway support optimization.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3