Sawing Force Prediction Model and Experimental Study on Vibration-Assisted Diamond Wire Sawing

Author:

Zhang Chenpu,Dong ZhikuiORCID,Zhao Yanheng,Liu Ziliang,Wu Shang,Yang Jiahao

Abstract

Diamond wire sawing is the main machining technology for slicing various brittle materials, such as crystalline silicon, SiC, and NdFeB. Due to their high hardness and high brittleness, as well as the ease with which the surfaces of machined materials are damaged, it is difficult to further improve the sawing efficiency and the surface quality based on research conducted on the original machining method. In this paper, a vibration-assisted diamond wire sawing method is proposed. We analyzed the impact of load on the ingot, motion trajectory, and sawing depth of the abrasive particles, and a macroscopic sawing force prediction model for the vibration-assisted sawing method was established and verified via experiments. Based on the single-wire-sawing experiment and prediction model, the influences of the vibration parameters and sawing parameters on the sawing force were determined. The influences of vibration assistance on the surface quality, including the roughness profile, waviness profile, thickness profile, Ra, and Rz, were explored through single-wire-sawing experiments, and the influences of vibration assistance on the geometric parameters of slices, such as the total thickness variation (TTV) and warp, were explored through multi-wire-sawing experiments. It was found that vibration-assisted sawing can reduce sawing force and improve surface quality.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3