Fault Monitoring of Chemical Process Based on Sliding Window Wavelet DenoisingGLPP

Author:

Yang Fan,Cui Yuancun,Wu Feng,Zhang Ridong

Abstract

In industrial process fault monitoring, it is very important to collect accurate data, but in the actual process, there are often various noises that are difficult to eliminate in the collected data due to sensor accuracy, measurement errors, or human factors. Existing statistical process monitoring methods often ignore the problem of data noise. To solve this problem, a sliding window wavelet denoising-global local preserving projections (SWWD-GLPP) process monitoring method is proposed. In the offline stage, the wavelet denoising method is used to denoise the offline data, and then, the GLPP method is used for offline modeling, and then, the control limit is obtained by the kernel density estimation method. In the online phase, the sliding window wavelet denoising method is used to denoise the online data in real time. Then, use the model of the GLPP method to find the statistics, compare them with the control limit, judge the fault situation, and finally, use the contribution graph method to determine the variable that caused the fault, so as to diagnose the fault. This article uses a numerical case to illustrate the effectiveness of the algorithm, using the Tennessee Eastman (TE) process to compare the traditional principal component analysis (PCA) and GLPP methods to further prove the effectiveness and superiority of the method.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative detection of the width and depth of subsurface defects in curved structures using ultrasonic Rayleigh waves;Nondestructive Testing and Evaluation;2024-09-03

2. Control performance monitoring of chemical industrial process based on model residual;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

3. Business End-to-end Multi-Failure Concurrent Monitoring for Large Scale Cloud Native Applications;2023 5th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI);2023-12-15

4. A Tremor Suppression and Noise Removal Algorithm for Microscopic Robot-Assisted Cataract Surgery;IEEE/ASME Transactions on Mechatronics;2023-10

5. Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities;Sensors;2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3