Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities

Author:

Bofill Jherson1,Abisado Mideth2,Villaverde Jocelyn3,Sampedro Gabriel Avelino45ORCID

Affiliation:

1. Research and Development Center, Philippine Coding Camp, Manila 1004, Philippines

2. College of Computing and Information Technologies, National University, Manila 1008, Philippines

3. School of Electrical, Electronics and Computer Engineering, Mapúa University, Manila 1002, Philippines

4. Faculty of Information and Communication Studies, University of the Philippines Open University, Laguna 4031, Philippines

5. Center for Computational Imaging and Visual Innovations, De La Salle University, 2401 Taft Ave., Malate, Manila 1004, Philippines

Abstract

High efficiency and safety are critical factors in ensuring the optimal performance and reliability of systems and equipment across various industries. Fault monitoring (FM) techniques play a pivotal role in this regard by continuously monitoring system performance and identifying the presence of faults or abnormalities. However, traditional FM methods face limitations in fully capturing the complex interactions within a system and providing real-time monitoring capabilities. To overcome these challenges, Digital Twin (DT) technology has emerged as a promising solution to enhance existing FM practices. By creating a virtual replica or digital copy of a physical equipment or system, DT offers the potential to revolutionize fault monitoring approaches. This paper aims to explore and discuss the diverse range of predictive methods utilized in DT and their implementations in FM across industries. Furthermore, it will showcase successful implementations of DT in FM across a wide array of industries, including manufacturing, energy, transportation, and healthcare. The utilization of DT in FM enables a comprehensive understanding of system behavior and performance by leveraging real-time data, advanced analytics, and machine learning algorithms. By integrating physical and virtual components, DT facilitates the monitoring and prediction of faults, providing valuable insights into the system’s health and enabling proactive maintenance and decision making.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3