Integrated Field Surveying and Land Surface Quantitative Analysis to Assess Landslide Proneness in the Conero Promontory Rocky Coast (Italy)

Author:

Troiani FrancescoORCID,Martino SalvatoreORCID,Marmoni Gian MarcoORCID,Menichetti MarcoORCID,Torre Davide,Iacobucci GiuliaORCID,Piacentini DanielaORCID

Abstract

Rock slopes involved in extensive landslide processes are often characterized by complex morphodynamics acting at different scales of space and time, responsible for different evolutionary scenarios. Mass Rock Creep (MRC) is a critical process for long-term geomorphological evolution of slopes and can likewise characterize actively retreating coastal cliffs where, in addition, landslides of different typologies and size superimpose in space and time to marine processes. The rocky coast at the Conero promontory (central Adriatic Sea, Italy) offers a rare opportunity for better understanding the predisposing role of the morphostructural setting on coastal slope instability on a long-time scale. In fact, the area presents several landslides of different typologies and size and state of activity, together with a wide set of landforms and structural features effective for better comprehending the evolution mechanisms of slope instability processes. Different investigation methods were implemented; in particular, traditional geomorphological and structural field surveys were combined with land surface quantitative analysis based on a Digital Elevation Model (DEM) with ground-resolution of 2 m. The results obtained demonstrate that MRC involves the entire coastal slope, which can be zoned in two distinct sectors as a function of a different morphostructural setting responsible for highly differentiated landslide processes. Therefore, at the long-time scale, two different morphodynamic styles can be depicted along the coastal slopes that correspond to specific evolutionary scenarios. The first scenario is characterized by MRC-driven, time-dependent slope processes involving the entire slope, whereas the second one includes force-driven slope processes acting at smaller space–time scales. The Conero promontory case study highlights that the relationships between slope shape and structural setting of the deforming areas are crucial for reaching critical volumes to induce generalized slope collapse as the final stage of the MRC process. The results from this study stress the importance of understanding the role of morphostructures as predisposing conditions for generalized slope failures along rocky coasts involved in MRC. The findings discussed here suggest the importance of the assessment of the slope instability at the long time scale for a better comprehension of the present-day slope dynamics and its major implications for landslide monitoring strategies and the hazard mitigation strategies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3