Enhancing the Identification and Mapping of Fluvial Terraces Combining Geomorphological Field Survey with Land-Surface Quantitative Analysis

Author:

Iacobucci GiuliaORCID,Piacentini DanielaORCID,Troiani FrancescoORCID

Abstract

A methodological approach to refining the identification and mapping of fluvial terraces has been applied, combining geomorphological field surveys with the computation and assessment of different morphometric parameters (local, statistical, and object-oriented), derived from a high-resolution digital terrain model (DTM) obtained from a LiDAR survey. The mid-sector floodplain of the Misa River basins was taken as a valid example of the main river valleys draining the northern Marche Apennines (Italy) and was considered an ideal site to test a combination of different geomorphological techniques for enhancing fluvial terraces’ detection and mapping. In this area, late Pleistocene–Holocene fluvial terraces are well exposed, and their geomorphological and geochronological characteristics have largely already been studied. However, a reliable distinction of the different Holocene terrace levels, including a detailed geomorphological mapping of different terrace features, is still lacking due to the very complex terrace geometry and the lack of good-quality deposit outcrops. Land-surface quantitative (LSQ) analysis has been coupled with the available outcomes of previous studies and ad-hoc geomorphological field surveys to enhance the identification and mapping of fluvial terraces. The results of this work provided information for the discernment of terrace remnants belonging to the full-glacial fill terrace generation (late Pleistocene) as well as reconstruction of the terrace top–surface, and can be used to distinguish the inner terrace limits coinciding with the margin of the floodplain. It has also been possible to identify and delimit the late Pleistocene terrace from a staircase of three younger strath terraces formed during the Holocene. The results of this study demonstrated that the investigation of fluvial landforms, at different scales, can strongly benefit from the integration of field surveys and quantitative geomorphic analysis based on high-resolution digital topographic datasets. In particular, the integration of LSQ analysis with ground-truth geomorphological data can be dramatically helpful for the identification and mapping of fluvial terraces.

Funder

Sapienza University of Rome

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3