Detection of Cliff Top Erosion Drivers through Machine Learning Algorithms between Portonovo and Trave Cliffs (Ancona, Italy)

Author:

Fullin Nicola12ORCID,Fraccaroli Michele3,Francioni Mirko4ORCID,Fabbri Stefano5,Ballaera Angelo2ORCID,Ciavola Paolo1ORCID,Ghirotti Monica1ORCID

Affiliation:

1. Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy

2. Italian National Research Council (CNR), Research Institute for Geo-Hydrological Protection (IRPI), Corso Stati Uniti 4, 35127 Padova, Italy

3. Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy

4. Department of Pure and Applied Sciences, University of Urbino, 61029 Urbino, Italy

5. Department of Biological, Geological and Environmental Sciences BiGeA, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy

Abstract

Rocky coastlines are characterised by steep cliffs, which frequently experience a variety of natural processes that often exhibit intricate interdependencies, such as rainfall, ice and water run-off, and marine actions. The advent of high temporal and spatial resolution data, that can be acquired through remote sensing and geomatics techniques, has facilitated the safe exploration of otherwise inaccessible areas. The datasets that can be gathered from these techniques, typically combined with data from fieldwork, can subsequently undergo analyses employing/applying machine learning algorithms and/or numerical modeling, in order to identify/discern the predominant influencing factors affecting cliff top erosion. This study focuses on a specific case situated at the Conero promontory of the Adriatic Sea in the Marche region. The research methodology entails several steps. Initially, the morphological, geological and geomechanical characteristics of the areas were determined through unmanned aerial vehicle (UAV) and conventional geological/geomechanical surveys. Subsequently, cliff top retreat was determined within a GIS environment by comparing orthophotos taken in 1978 and 2022 using the DSAS tool (Digital Shoreline Analysis System), highlighting cliff top retreat up to 50 m in some sectors. Further analysis was conducted via the use of two Machine Learning (ML) algorithms, namely Random Forest (RF) and eXtreme Gradient Boosting (XGB). The Mean Decrease in Impurity (MDI) methodology was employed to assess the significance of each factor. Both algorithms yielded congruent results, emphasising that cliff top erosion rates are primarily influenced by slope height. Finally, a validation of the ML algorithm results was conducted using 2D Limit Equilibrium Method (LEM) codes. Ten sections extracted from the sector experiencing the most substantial cliff top retreat, as identified by DSAS, were utilised for 2D LEM analysis. Factor of Safety (FS) values were identified and compared with the cliff height of each section. The results from the 2D LEM analyses corroborated the outputs of the ML algorithms, showing a strong correlation between the slope instability and slope height (R2 of 0.84), with FS decreasing with slope height.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3