Abstract
The coefficients of thermal expansion (CTE) and thermal conductivity (TC) are important for heat sink applications, as they can minimize stress between heat sink substrates and chips and prevent failure from thermal accumulation in electronics. We investigated the interface behavior and manufacturing of diamond/Cu composites and found that they have much lower TCs than copper due to their low densities. Most defects, such as cavities, form around diamond particles, substantially decreasing the high TC of diamond reinforcements. However, the measurement results for the Cu-coated diamond/Cu composites are unsatisfactory because the nanosized copper layer on the diamond surface grew and spheroidized at elevated sintering temperatures. Realizing ideal interfacial bonding between a copper matrix and diamond particles is difficult. The TC of the 40 vol.% Ti-coated diamond/Cu composite is 475.01 W m−1 K−1, much higher than that of diamond/Cu and Cu-coated diamond/Cu composites under equivalent manufacturing conditions. The minimally grown titanium layer retained its nanosized and was consistent with the sintering temperature. Depositing a nanosized titanium layer on a diamond surface will strengthen interfacial bonding through interface reactions among the copper matrix, nanosized titanium layer and diamond particles, reducing the interfacial thermal resistance and exploiting the high TC of diamond particles, even if defects from powder metallurgy remain. These results provide an important experimental and theoretical basis for manufacturing diamond/Cu composites for heat sink applications.
Funder
Beijing Municipal Commission of Education
Subject
General Materials Science,Metals and Alloys
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献