Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness

Author:

Zeng Xiang,Xiao Yancong,Ji XiaohuiORCID,Wang Gongwen

Abstract

Mineral identification is an important part of geological analysis. Traditional identification methods rely on either the experience of the appraisers or the various measuring instruments, and the methods are either easily influenced by appraisers’ experience or require too much work. To solve the above problems, there are studies using image recognition and intelligent algorithms to identify minerals. However, current studies cannot identify many minerals, and the accuracy is low. To increase the number of identified minerals and accuracy, we propose a method that uses both mineral photo images and the Mohs hardness in deep neural networks to identify the minerals. The experimental results showed that the method can reach 90.6% top-1 accuracy and 99.6% top-5 accuracy for 36 common minerals. An app based on the model was implemented on smartphones with no need for accessing the internet and communication signals. Tested on 73 real mineral samples, the app achieved top-1 accuracy of 89% when the mineral image and hardness are both used and 71.2% when only the mineral image is used.

Funder

The National R&D Infrastructure and Facility Development Program of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3