Prospectivity Mapping of Mineral Deposits in Northern Norway Using Radial Basis Function Neural Networks

Author:

Juliani CyrilORCID,Ellefmo Steinar

Abstract

In this paper, the radial basis function neural network (RBFNN) is used to generate a prospectivity map for undiscovered copper-rich (Cu) deposits in the Finnmark region, northern Norway. To generate the input data for RBFNN, geological and geophysical data, including up to 86 known mineral occurrences hosted in mafic host-rocks, were combined at different resolutions. Mineral occurrences were integrated into “deposit” and “non-deposit” training sets. Running RBFNN on different input vectors, with a k-fold cross-validation method, showed that increasing the number of iterations and radial basis functions resulted in: (1) a reduction of training mean squared error (MSE) down to 0.1, depending on the grid resolution, and (2) reaching correct classification rates of 0.9 and 0.6 for training and validation, respectively. The latter depends on: (1) the selection of “non-deposit” training data throughout the study area, (2) the scale at which data was acquired, and (3) the dissimilarity of input vectors. The “deposit” input data were correctly identified by the trained model (up to 83%) after proceeding to classification of non-training data. Up to 885 km2 of the Finnmark region studied is favorable for Cu mineralization based on the resulting mineral prospectivity map. The prospectivity map can be used as a reconnaissance guide for future detailed ground surveys.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3