Unsupervised segmentation for sandstone thin section image analysis
-
Published:2024-07-23
Issue:
Volume:
Page:
-
ISSN:1420-0597
-
Container-title:Computational Geosciences
-
language:en
-
Short-container-title:Comput Geosci
Author:
Barbosa Rayan T. C. M.ORCID, Faria E. L., Klatt Matheus, Silva Thais C., Coelho Juliana. M., Matos Thais F., Santos Bernardo C. C., Gonzalez J. L., Bom Clécio R., de Albuquerque Márcio P., de Albuquerque Marcelo P.
Funder
Petrobras Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels. Technical Report, (2010) 2. Baklanova, O., Shvets, O.: Cluster analysis methods for recognition of mineral rocks in the mining industry. 1–5 (2014) 3. Van Den Berg, E.H., Meesters, A.G.C.A., Kenter, J.A.M., Schlager, W.: Automated separation of touching grains in digital images of thin sections. Elsevier 28, 179–190 (2002) 4. Budenny, S., Pachezhertsev, A., Erofeev, A., Mitrushkin, D.: Image processing and machine learning approaches for petrographic thin section analysis. 1–13 (2017) 5. Bukharev, A., Budenny, S., Pachezhertsev, Belozerov, B., Zhukovskaya, E., Tugarova, M., Bukhaniv, N., Zakirov, A.: Automatic analysis of petrographic thin section images of sandstone. In: ECMOR XVI - 16th European Conference on the Mathematics of Oil Recovery, MIPT, 1–2 (2018)
|
|