Effects of Severe Water Stress on Maize Growth Processes in the Field

Author:

Song Libing,Jin JimingORCID,He Jianqiang

Abstract

In this study, we investigated the effects of water stress on the growth and yield of summer maize (Zea mays L.) over four phenological stages: Seedling, jointing, heading, and grain-filling. Water stress treatments were applied during each of these four stages in a water-controlled field in the Guanzhong Plain, China between 2013 and 2016. We found that severe water stress during the seedling stage had a greater effect on the growth and development of maize than stress applied during the other three stages. Water stress led to lower leaf area index (LAI) and biomass owing to reduced intercepted photosynthetically active radiation (IPAR) and radiation-use efficiency (RUE). These effects extended to the reproductive stage and eventually reduced the unit kernel weight and yield. In addition, the chlorophyll content in the leaf remained lower, even though irrigation was applied partially or fully after the seedling stage. Severe and prolonged water stress in maize plants during the seedling stage may damage the structure of the photosynthetic membrane, resulting in lower chlorophyll content, and therefore RUE, than those in the plants that did not experience water stress at the seedling stage. Maize plants with such damage did not show a meaningful recovery even when irrigation levels during the rest of the growth period were the same as those applied to the plants not subjected to water stress. The results of our field experiments suggest that an unrecoverable yield loss could occur if summer maize were exposed to severe and extended water stress events during the seedling stage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3