Microalgae–bacteria interaction: a catalyst to improve maize (Zea mays L.) growth and soil fertility

Author:

Solomon WogeneORCID,Mutum Lamnganbi,Janda Tibor,Molnar Zoltan

Abstract

AbstractBiofertilisers harbouring living organisms hold allure due to their prospective favourable influence on plant growth, coupled with a diminished environmental footprint and cost-effectiveness in contrast to conventional mineral fertilisers. The purpose of the present study was to evaluate the capacity of a specific microalga (MACC-612, Nostoc linckia) biomass and plant growth-promoting bacteria (PGPB) separately and together to improve crop growth and promote soil health. The research used a factorial design within a completely randomised block framework, featuring four replications for three consecutive years across different fields. The experiment utilised three levels of microalga (control, 0.3 g/L of N. linckia, MACC-612, and 1 g/L of N. linckia, MACC-612) and three levels of bacterial strains (control, Azospirillum lipoferum and Pseudomonas fluorescens). The result demonstrated that the use of N. linckia and PGPB separately or jointly as soil treatment resulted in a substantial improvement in chlorophyll, plant biomass, soil humus, and nitrogen, depending on the environmental conditions of the years. The combined use of N. linckia and PGPB results in an improvement in dry leaf weight by 35.6–107.3% at 50 days after sowing (DAS) and 29.6–49.8% at 65 DAS, compared to the control group. Furthermore, the studies show that the synergistic application of N. linckia at 0.3 g/L, in conjunction with A. lipoferum, significantly improved total nitrogen and (NO3 + NO2)-nitrogen, registering increases of 20.7–40% and 27.1–59.2%, respectively, during the study period. The most effective synergistic combination was identified through the application of 0.3 g/L of N. linckia along with A. lipoferum. Hence, application of biofertilisers through synergistic combinations of two or more microorganisms, such as microalgae and bacteria, holds promise in improving crop chlorophyll, growth, and soil nitrogen.

Funder

Széchenyi István University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3