Lactobacillus rhamnosus CY12 Enhances Intestinal Barrier Function by Regulating Tight Junction Protein Expression, Oxidative Stress, and Inflammation Response in Lipopolysaccharide-Induced Caco-2 Cells

Author:

Zheng Juanshan,Ahmad Anum Ali,Yang YayuanORCID,Liang Zeyi,Shen WenxiangORCID,Feng Min,Shen Jiahao,Lan Xianyong,Ding Xuezhi

Abstract

The intestinal barrier is vital for preventing inflammatory bowel disease (IBD). The objectives of this study were to assess whether the Lactobacillus rhamnosus CY12 could alleviate oxidative stress, inflammation, and the disruption of tight junction (TJ) barrier functions induced by lipopolysaccharide (LPS), and therefore to explore the potential underlying molecular mechanisms. Our results showed that LPS-induced Cancer coli-2 (Caco-2) cells significantly increased the levels of reactive oxygen species (ROS), lactate dehydrogenase, inflammatory cytokines interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α (IL-1β, IL-6, IL-8, and TNF-α), and the cell apoptosis rate while decreasing the levels of TJ proteins occludin, zonula occludens-1 (ZO-1), and claudin and antioxidant enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase(CAT, SOD, and GSH-Px) (p < 0.05). However, Lactobacillus rhamnosus CY12 could relieve cytotoxicity, apoptosis, oxidative stress, and pro-inflammatory cytokine expressions, and also inhibit the Toll-like receptor 4/nuclear factor kappa-B(TLR4/NF-κB) signaling pathway. Furthermore, the gene expression of antioxidant enzymes, as well as the mRNA and protein expressions of TJ proteins, was improved. Particularly, the concentration of 108 cfu/mL significantly prevented the inflammatory injury induced by LPS in Caco-2 cells (p < 0.05). These findings support a potential application of Lactobacillus rhamnosus CY12 as a probiotic to prevent LPS-induced intestinal injury and treat intestinal barrier dysfunction.

Funder

the Innovation Program of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3