A Feature Engineering-Assisted CM Technology for SMPS Output Aluminium Electrolytic Capacitors (AEC) Considering D-ESR-Q-Z Parameters

Author:

Kareem Akeem BayoORCID,Hur Jang-Wook

Abstract

Recent research has seen an interest in the condition monitoring (CM) approach for aluminium electrolytic capacitors (AEC), which are present in switched-mode power supplies and other power electronics equipment. From various literature reviews conducted and from a failure mode effect analysis (FMEA) standpoint, the most critical and prone to fault component with the highest percentage is mostly capacitors. Due to its long-lasting ability (endurance), CM offers a better paradigm for AEC due to its application. However, owing to severe conditions (over-voltage, mechanical stress, high temperature) that could occur during use, they (capacitors) could be exposed to early breakdown and overall shutdown of the SMPS. This study considered accelerated life testing (electrical stress and long-term frequency testing) for the component due to its endurance in thousands of hours. We have set up the experiment test bench to monitor the critical electrical parameters: dissipation factor (D), equivalent series resistance (ESR), quality factor (Q), and impedance (Z), which would serve as a health indicator (HI) for the evaluation of the AECs. Time-domain features were extracted from the measured data, and the best features were selected using the correlation-based technique.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3