ANN-Based Reliability Enhancement of SMPS Aluminum Electrolytic Capacitors in Cold Environments

Author:

Jeong Sunwoo1,Kareem Akeem Bayo1ORCID,Song Sungwook2,Hur Jang-Wook1

Affiliation:

1. Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi-si 39177, Republic of Korea

2. Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi-si 39177, Republic of Korea

Abstract

Due to their substantial energy density and economical pricing, switching-mode power supplies (SMPSs) often utilize electrolytic capacitors. However, their ability to function at low temperatures is essential for dependable operation in several sectors, including telecommunications, automotive, and aerospace. This study includes an experimental evaluation of how well standard SMPS electrolytic capacitors operate at low temperatures. This paper investigates the suitability of standard electrolytic capacitors used in switched-mode power supplies (SMPSs) for low-temperature applications. The experimental evaluation exposed the capacitors to temperatures ranging from −5 °C to −40 °C, assessing capacitance (Cp), impedance (Z), dissipation factor (DF), and equivalent series resistance (ESR) at each temperature. The capacitor’s time-domain electrical signals were analyzed using the Pearson correlation coefficient to extract discriminative features. These features were input into an artificial neural network (ANN) for training and testing. The results indicated a significant impact of low temperatures on capacitor performance. Capacitance decreased with lower temperatures, while the ESR and leakage current increased, affecting stability and efficiency. Impedance was a valuable diagnostic tool for identifying potential capacitor failure, showing a 98.44% accuracy drop at −5 °C and 88.75% at the peak temperature, indicating proximity to the manufacturer’s specified limit. The study suggests further research and development to improve the performance of electrolytic capacitors in SMPS systems under cold conditions, aiming to boost efficiency and reliability.

Funder

MSIT (Ministry of Science and ICT), Korea

IITP

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3