Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer

Author:

Dudek Karolina,Dulski MateuszORCID,Łosiewicz BożenaORCID

Abstract

The surface modification of NiTi shape memory alloys is a method for increasing their multi-functionalities. In our solution, hydroxyapatite powder was mixed with a chemically synthesized silicon dioxide/silver (nSiO2/Ag) nanocomposite in a different weight ratio between components (1:1, 5:1, and 10:1) and then electrophoretically deposited on the surface of the NiTi alloy, under various time and voltage conditions. Subsequently, uniform layers were subjected to heat treatment at 700 °C for 2 h in an argon atmosphere to improve the strength of their adhesion to the NiTi substrate. A change in linear dimensions of the co-deposited materials during the sintering process was also analyzed. After the heat treatment, XRD, Raman, and Scanning Electron Microscopy (SEM) + Energy Dispersive Spectrometer (EDS) studies revealed the formation of completely new composite coatings, which consisted of rutile and TiO2-SiO2 glass with silver oxide and HAp particles that were embedded into such coatings. It was found that spalling characterized the 1:1 ratio coating, while the others were crack-free, well-adhered, and capable of deformation to 3.5%. Coatings with a higher concentration of nanocomposite were rougher. Electrochemical impedance spectroscopy (EIS) tests in Ringer’s solution revealed the capacitive behavior of the material with high corrosion resistance. The kinetics and susceptibility to pitting corrosion was the highest for the NiTi electrode that was coated with a 5:1 ratio HAp/nSiO2/Ag hybrid coating.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3