Farm Silage Facilities and Their Management for the Prevention of Anaerobic Bacteria Spore Contamination in Raw Milk

Author:

Abeni FabioORCID,Marino RosannaORCID,Petrera FrancescaORCID,Segati Giulia,Galli Andrea,Carminati DomenicoORCID

Abstract

At feed-out, aerobic spoilage of silage enables an increase in anaerobic spore-forming bacteria (ANSB) that may enter the total mixed ration (TMR). The aim of our study was to understand whether in hot summers the silage structures and management may affect the level of ANSB in milk for long-ripening cheese production. A survey of silage facilities, management, and their relationships with silage, TMR, feces, and milk ANSB most probable number (MPN) content was conducted in the Po Valley during summer months. Silo type did not affect the mean ANSB, but only the wideness of their value distributions, with a narrow range for bags and a wider range for bunkers. The unloading equipment affected the ANSB count; the front-end loader with cutter was associated with a lower ANSB count—probably as a result of the reduced surface left after daily silage removal. Silo length and daily removed face width were the main factors affecting contamination of silage by spore-forming bacteria during summer, with longer silos and wider surface removal reducing ANSB contamination—probably as a consequence of reduced aerobic spoilage at the silage surface. The silage contamination by spore-forming bacteria within a log10 2 MPN g−1 allowed a low concentration of spore-forming bacteria at the farm bulk milk tank level. Fecal ANSB levels did not factor into the regression that explains the ANSB in farm milk. It has been found that silage facilities’ features and their management are an important first step to reduce the extent of ANSB contamination at the farm level.

Funder

Fondazione Cariplo

Ministero delle Politiche Agricole Alimentari e Forestali

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3