Near-Infrared Photoresponse in Ge/Si Quantum Dots Enhanced by Photon-Trapping Hole Arrays

Author:

Yakimov Andrew I.ORCID,Kirienko Victor V.ORCID,Bloshkin Aleksei A.ORCID,Utkin Dmitrii E.ORCID,Dvurechenskii Anatoly V.ORCID

Abstract

Group-IV photonic devices that contain Si and Ge are very attractive due to their compatibility with integrated silicon photonics platforms. Despite the recent progress in fabrication of Ge/Si quantum dot (QD) photodetectors, their low quantum efficiency still remains a major challenge and different approaches to improve the QD photoresponse are under investigation. In this paper, we report on the fabrication and optical characterization of Ge/Si QD pin photodiodes integrated with photon-trapping microstructures for near-infrared photodetection. The photon traps represent vertical holes having 2D periodicity with a feature size of about 1 μm on the diode surface, which significantly increase the normal incidence light absorption of Ge/Si QDs due to generation of lateral optical modes in the wide telecommunication wavelength range. For a hole array periodicity of 1700 nm and hole diameter of 1130 nm, the responsivity of the photon-trapping device is found to be enhanced by about 25 times at λ=1.2 μm and by 34 times at λ≈1.6 μm relative to a bare detector without holes. These results make the micro/nanohole Ge/Si QD photodiodes promising to cover the operation wavelength range from the telecom O-band (1260–1360 nm) up to the L-band (1565–1625 nm).

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3