NR-UIO: NLOS-Robust UWB-Inertial Odometry Based on Interacting Multiple Model and NLOS Factor Estimation

Author:

Hyun Jieum,Myung HyunORCID

Abstract

Recently, technology utilizing ultra-wideband (UWB) sensors for robot localization in an indoor environment where the global navigation satellite system (GNSS) cannot be used has begun to be actively studied. UWB-based positioning has the advantage of being able to work even in an environment lacking feature points, which is a limitation of positioning using existing vision- or LiDAR-based sensing. However, UWB-based positioning requires the pre-installation of UWB anchors and the precise location of coordinates. In addition, when using a sensor that measures only the one-dimensional distance between the UWB anchor and the tag, there is a limitation whereby the position of the robot is solved but the orientation cannot be acquired. To overcome this, a framework based on an interacting multiple model (IMM) filter that tightly integrates an inertial measurement unit (IMU) sensor and a UWB sensor is proposed in this paper. However, UWB-based distance measurement introduces large errors in multipath environments with obstacles or walls between the anchor and the tag, which degrades positioning performance. Therefore, we propose a non-line-of-sight (NLOS) robust UWB ranging model to improve the pose estimation performance. Finally, the localization performance of the proposed framework is verified through experiments in real indoor environments.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Indoor UWB NLOS Correction Positioning Method Based on Anchor LOS/NLOS Map;IEEE Sensors Journal;2023-12-15

2. Fusion localization for indoor airplane inspection using visual inertial odometry and ultrasonic RTLS;Scientific Reports;2023-10-23

3. A benchmark analysis of data‐driven and geometric approaches for robot ego‐motion estimation;Journal of Field Robotics;2023-01-03

4. Augmented UWB-ZUPT-SLAM Utilizing Multisensor Fusion;IEEE Journal of Indoor and Seamless Positioning and Navigation;2023

5. Pose-Graph-Based UWB SLAM with NLOS Factor Estimation;2022 22nd International Conference on Control, Automation and Systems (ICCAS);2022-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3