Use of SAR and Optical Time Series for Tropical Forest Disturbance Mapping

Author:

Hirschmugl Manuela,Deutscher Janik,Sobe Carina,Bouvet AlexandreORCID,Mermoz StéphaneORCID,Schardt Mathias

Abstract

Frequent cloud cover and fast regrowth often hamper topical forest disturbance monitoring with optical data. This study aims at overcoming these limitations by combining dense time series of optical (Sentinel-2 and Landsat 8) and SAR data (Sentinel-1) for forest disturbance mapping at test sites in Peru and Gabon. We compare the accuracies of the individual disturbance maps from optical and SAR time series with the accuracies of the combined map. We further evaluate the detection accuracies by disturbance patch size and by an area-based sampling approach. The results show that the individual optical and SAR based forest disturbance detections are highly complementary, and their combination improves all accuracy measures. The overall accuracies increase by about 3% in both areas, producer accuracies of the disturbed forest class increase by up to 25% in Peru when compared to only using one sensor type. The assessment by disturbance patch size shows that the amount of detections of very small disturbances (< 0.2 ha) can almost be doubled by using both data sets: for Gabon 30% as compared to 15.7–17.5%, for Peru 80% as compared to 48.6–65.7%.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3