Iterative Adaptive Based Multi-Polarimetric SAR Tomography of the Forested Areas

Author:

Jin Shuang12,Bi Hui12ORCID,Guo Qian12ORCID,Zhang Jingjing12,Hong Wen3

Affiliation:

1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Synthetic aperture radar tomography (TomoSAR) is an extension of synthetic aperture radar (SAR) imaging. It introduces the synthetic aperture principle into the elevation direction to achieve three-dimensional (3-D) reconstruction of the observed target. Compressive sensing (CS) is a favorable technology for sparse elevation recovery. However, for the non-sparse elevation distribution of the forested areas, if CS is selected to reconstruct it, it is necessary to utilize some orthogonal bases to first represent the elevation reflectivity sparsely. The iterative adaptive approach (IAA) is a non-parametric algorithm that enables super-resolution reconstruction with minimal snapshots, eliminates the need for hyperparameter optimization, and requires fewer iterations. This paper introduces IAA to tomographicinversion of the forested areas and proposes a novel multi-polarimetric-channel joint 3-D imaging method. The proposed method relies on the characteristics of the consistent support of the elevation distribution of different polarimetric channels and uses the L2-norm to constrain the IAA-based 3-D reconstruction of each polarimetric channel. Compared with typical spectral estimation (SE)-based algorithms, the proposed method suppresses the elevation sidelobes and ambiguity and, hence, improves the quality of the recovered 3-D image. Compared with the wavelet-based CS algorithm, it reduces computational cost and avoids the influence of orthogonal basis selection. In addition, in comparison to the IAA, it demonstrates greater accuracy in identifying the support of the elevation distribution in forested areas. Experimental results based on BioSAR 2008 data are used to validate the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Aeronautical Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3