Detecting selective logging in tropical forests with optical satellite data: an experiment in Peru shows texture at 3 m gives the best results

Author:

Aquino Chiara12ORCID,Mitchard Edward T. A.23,McNicol Iain M.24,Carstairs Harry23,Burt Andrew56,Vilca Beisit L. P.57,Mayta Sylvia8,Disney Mathias6ORCID

Affiliation:

1. CMCC Foundation – Euro‐Mediterranean Center on Climate Change Lecce Italy

2. School of GeoSciences, The University of Edinburgh Edinburgh UK

3. Space Intelligence Ltd 93 George Street Edinburgh UK

4. Centre for Sustainable Forests and Landscapes The University of Edinburgh Edinburgh UK

5. Sylvera Ltd London UK

6. Department of Geography University College London London UK

7. Escuela Profesional de Biología Universidad Nacional de San Antonio Abad del Cusco Cusco Peru

8. Asociación para la Investigación y Desarrollo Integral Lima Peru

Abstract

AbstractSelective logging is known to be widespread in the tropics, but is currently very poorly mapped, in part because there is little quantitative data on which satellite sensor characteristics and analysis methods are best at detecting it. To improve this, we used data from the Tropical Forest Degradation Experiment (FODEX) plots in the southern Peruvian Amazon, where different numbers of trees had been removed from four plots of 1 ha each, carefully inventoried by hand and terrestrial laser scanning before and after the logging to give a range of biomass loss (∆AGB) values. We conducted a comparative study of six multispectral optical satellite sensors at 0.3–30 m spatial resolution, to find the best combination of sensor and remote sensing indicator for change detection. Spectral reflectance, the normalised difference vegetation index (NDVI) and texture parameters were extracted after radiometric calibration and image preprocessing. The strength of the relationships between the change in these values and field‐measured ∆AGB (computed in % ha−1) was analysed. The results demonstrate that: (a) texture measures correlates more with ∆AGB than simple spectral parameters; (b) the strongest correlations are achieved for those sensors with spatial resolutions in the intermediate range (1.5–10 m), with finer or coarser resolutions producing worse results, and (c) when texture is computed using a moving square window ranging between 9 and 14 m in length. Maps predicting ∆AGB showed very promising results using a NIR‐derived texture parameter for 3 m resolution PlanetScope (R2 = 0.97 and root mean square error (RMSE) = 1.91% ha−1), followed by 1.5 m SPOT‐7 (R2 = 0.76 and RMSE = 5.06% ha−1) and 10 m Sentinel‐2 (R2 = 0.79 and RMSE = 4.77% ha−1). Our findings imply that, at least for lowland Peru, low‐medium intensity disturbance can be detected best in optical wavelengths using a texture measure derived from 3 m PlanetScope data.

Funder

H2020 European Research Council

National Centre for Earth Observation

Publisher

Wiley

Reference103 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3