Affiliation:
1. Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China
2. Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China
Abstract
Knowledge tracing is a crucial task that involves modeling learners’ knowledge levels and predicting their future learning performance. However, traditional deep knowledge tracing approaches often overlook the intrinsic relationships among learning features, treating them equally and failing to align with real learning scenarios. To address these issues, this paper proposes the multiple learning features, enhanced knowledge tracing (MLFKT) framework. Firstly, we construct learner–resource response (LRR) channels based on psychometric theory, establishing stronger intrinsic connections among learning features and overcoming the limitations of the item response theory. Secondly, we leverage stacked auto-encoders to extract low-dimensional embeddings for different LRR channels with denser representations. Thirdly, considering the varying impact of different LRR channels on learning performance, we introduce an attention mechanism to assign distinct weights to each channel. Finally, to address the challenges of memory retention and forgetting in the learning process and to handle long-term dependency issues, we employ a bidirectional long short-term memory network to model learners’ knowledge states, enabling accurate prediction of learning performance. Through extensive experiments on two real datasets, we demonstrate the effectiveness of our proposed MLFKT approach, which outperforms six traditional methods. The newly proposed method can enhance educational sustainability by improving the diagnosis of learners’ self-cognitive structures and by empowering teachers to intervene and personalize their teaching accordingly.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献