Knowledge Graph-Enhanced Intelligent Tutoring System Based on Exercise Representativeness and Informativeness

Author:

Li Linqing1,Wang Zhifeng12ORCID

Affiliation:

1. CCNU Wollongong Joint Institute, Central China Normal University, Luoyu Road, Wuhan 430079, China

2. Faculty of Artificial Intelligence in Education, Central China Normal University, Luoyu Road, Wuhan 430079, China

Abstract

In the realm of online tutoring intelligent systems, e-learners are exposed to a substantial volume of learning content. The extraction and organization of exercises and skills hold significant importance in establishing clear learning objectives and providing appropriate exercise recommendations. Presently, knowledge graph-based recommendation algorithms have garnered considerable attention among researchers. However, these algorithms solely consider knowledge graphs with single relationships and do not effectively model exercise-rich features, such as exercise representativeness and informativeness. Consequently, this paper proposes a framework, namely, the Knowledge Graph Importance-Exercise Representativeness and Informativeness Framework, to address these two issues. The framework consists of four intricate components and a novel cognitive diagnosis model called the Neural Attentive Cognitive Diagnosis model to recommend the proper exercises. These components encompass the informativeness component, exercise representation component, knowledge importance component, and exercise representativeness component. The informativeness component evaluates the informational value of each exercise and identifies the candidate exercise set E C that exhibits the highest exercise informativeness. Moreover, the exercise representation component utilizes a graph neural network to process student records. The output of the graph neural network serves as the input for exercise-level attention and skill-level attention, ultimately generating exercise embeddings and skill embeddings. Furthermore, the skill embeddings are employed as input for the knowledge importance component. This component transforms a one-dimensional knowledge graph into a multidimensional one through four class relations and calculates skill importance weights based on novelty and popularity. Subsequently, the exercise representativeness component incorporates exercise weight knowledge coverage to select exercises from the candidate exercise set for the tested exercise set. Lastly, the cognitive diagnosis model leverages exercise representation and skill importance weights to predict student performance on the test set and estimate their knowledge state. To evaluate the effectiveness of our selection strategy, extensive experiments were conducted on two types of publicly available educational datasets. The experimental results demonstrate that our framework can recommend appropriate exercises to students, leading to improved student performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3