A Unified Interpretable Intelligent Learning Diagnosis Framework for Learning Performance Prediction in Intelligent Tutoring Systems

Author:

Wang Zhifeng1ORCID,Yan Wenxing1,Zeng Chunyan2ORCID,Tian Yuan1,Dong Shi1

Affiliation:

1. School of Educational Information Technology, Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China

2. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China

Abstract

Intelligent learning diagnosis is a critical engine of intelligent tutoring systems, which aims to estimate learners’ current knowledge mastery status and predict their future learning performance. The significant challenge with traditional learning diagnosis methods is the inability to balance diagnostic accuracy and interpretability. Although the existing psychometric-based learning diagnosis methods provide some domain interpretation through cognitive parameters, they have insufficient modeling capability with a shallow structure for large-scale learning data. While the deep learning-based learning diagnosis methods have improved the accuracy of learning performance prediction, their inherent black-box properties lead to a lack of interpretability, making their results untrustworthy for educational applications. To settle the abovementioned problem, the proposed unified interpretable intelligent learning diagnosis framework, which benefits from the powerful representation learning ability of deep learning and the interpretability of psychometrics, achieves a better performance of learning prediction and provides interpretability from three aspects: cognitive parameters, learner-resource response network, and weights of self-attention mechanism. Within the proposed framework, this paper presents a two-channel learning diagnosis mechanism LDM-ID as well as a three-channel learning diagnosis mechanism LDM-HMI. Experiments on two real-world datasets and a simulation dataset show that our method has higher accuracy in predicting learners’ performances compared with the state-of-the-art models and can provide valuable educational interpretability for applications such as precise learning resource recommendation and personalized learning tutoring in intelligent tutoring systems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3