A Learner-Centric Explainable Educational Metaverse for Cyber–Physical Systems Engineering

Author:

Yun Seong-Jin1ORCID,Kwon Jin-Woo1ORCID,Lee Young-Hoon1,Kim Jae-Heon1,Kim Won-Tae1ORCID

Affiliation:

1. Future Convergence Engineering Major, Department of Computer Science and Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea

Abstract

Cyber–physical systems have become critical across industries. They have driven investments in education services to develop well-trained engineers. Education services for cyber–physical systems require the hiring of expert tutors with multidisciplinary knowledge, as well as acquiring expensive facilities/equipment. In response to the challenges posed by the need for the equipment and facilities, a metaverse-based education service that incorporates digital twins has been explored as a solution. However, the issue of recruiting expert tutors who can enhance students’ achievements remains unresolved, making it difficult to effectively cultivate talent. This paper proposes a reference architecture for a learner-centric educational metaverse with an intelligent tutoring framework as its core feature to address these issues. We develop a novel explainable artificial intelligence scheme for multi-class object detection models to assess learners’ achievements within the intelligent tutoring framework. Additionally, a genetic algorithm-based improvement search method is applied to the framework to derive personalized feedback. The proposed metaverse architecture and framework are evaluated through a case study on drone education. The experimental results show that the explainable AI scheme demonstrates an approximately 30% improvement in the explanation accuracy compared to existing methods. The survey results indicate that over 70% of learners significantly improved their skills based on the provided feedback.

Funder

Korea University of Technology and Education

National Research Foundation of Korea (NRF) under the Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3