Affiliation:
1. Future Convergence Engineering Major, Department of Computer Science and Engineering, Korea University of Technology and Education, Cheonan 31253, Republic of Korea
Abstract
Cyber–physical systems have become critical across industries. They have driven investments in education services to develop well-trained engineers. Education services for cyber–physical systems require the hiring of expert tutors with multidisciplinary knowledge, as well as acquiring expensive facilities/equipment. In response to the challenges posed by the need for the equipment and facilities, a metaverse-based education service that incorporates digital twins has been explored as a solution. However, the issue of recruiting expert tutors who can enhance students’ achievements remains unresolved, making it difficult to effectively cultivate talent. This paper proposes a reference architecture for a learner-centric educational metaverse with an intelligent tutoring framework as its core feature to address these issues. We develop a novel explainable artificial intelligence scheme for multi-class object detection models to assess learners’ achievements within the intelligent tutoring framework. Additionally, a genetic algorithm-based improvement search method is applied to the framework to derive personalized feedback. The proposed metaverse architecture and framework are evaluated through a case study on drone education. The experimental results show that the explainable AI scheme demonstrates an approximately 30% improvement in the explanation accuracy compared to existing methods. The survey results indicate that over 70% of learners significantly improved their skills based on the provided feedback.
Funder
Korea University of Technology and Education
National Research Foundation of Korea (NRF) under the Ministry of Education