Asymmetric Force Effect and Damage Analysis of Unlooped Segment of Large-Diameter Shield under Synchronous Propulsion and Assembly Mode

Author:

Dai Zeyu,Li PeinanORCID,Wang XiORCID,Liu Jun,Fan Jie,Kou Xiaoyong

Abstract

This article outlines the merits of the proposed synchronous propulsion and assembly method in the construction of a long-distance tunnel. In traditional shield construction, the stress of the unlooped segment during the assembly process is systematically overlooked. However, in the novel tunnel construction method, the advancing force of the shield directly acts on the unlooped segment, so the safety of the unlooped segment is unknown. In this paper, focusing on the safety of the segment assembly process, the segment interactions and stress concentrations under asymmetric force effects are analysed in detail via a suite of finite element models. The results show that in the synchronous propulsion and assembly mode the segments will rotate inward. A clamping effect will gradually appear during the assembly process, which makes segment deflection decrease and the stress distribution more uniform. Under asymmetrical stress, the damage to longitudinal segments is highly correlated with the types of assembly errors. The damage position that is deflected radially inward will change with the deflection angle, and the outer joint of the segment is the largest. Based on the numerical outputs, guidelines for the application of synchronous propulsion and assembly technology in practical engineering are provided.

Funder

Science and Technology Commission of Shanghai Municipality

Ministry of Education of the People's Republic of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Study on time-varying law of longitudinal pressure between rings of shield tunnel;Liu;J. Geotech. Eng.,2021

2. Predictive maintenance of shield tunnels

3. Mechanism of soft ground tunnel defect generation and functional degradation

4. Study of the collapse mechanism of shield tunnels due to the failure of segments in sandy ground

5. Application of artificial freezing to recovering a collapsed tunnel in Shanghai metro No.4 line;Fang;China Civ. Eng. J.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3