Impact of Hydrogen Voiding in Chip-to-Chip Electroless All-Copper Interconnections

Author:

Ren Nana1ORCID,Zhang Yuyi1,Shu Wenlong1,Lu Chenxiao1,Zhang Wenjing2,Chen Zhuo1ORCID,Wang Fuliang1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. The School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Abstract

Three-dimensional (3D) integration has become a leading approach in chip packaging. The interconnection density and reliability of micro-bumps in chip stacking are often threatened by high bonding temperatures. The method of building chip-to-chip interconnections by electroless deposition of metal has its distinct merit, while the interfacial defect issue, especially that related to voiding during the merging of opposite sides, remains largely unsolved. In this study, to trace the influencing factors in the voiding, the growth characteristics of the electroless all-copper interconnections were examined by carrying out deposition experiments in a microfluidic channel device. The results show that when the gap between the opposite copper bumps to be electrolessly merged is as low as 10 μm, significant voids appear at the inflow side and the top of the copper bumps because the hydrogen cannot be expelled in time. A finite-element flow model of the plating solution between the chips was established, which showed that the flow rate of the plating solution around the copper bumps was much higher than in the merging gap, causing an uneven supply of reactants. Based on these findings, we proposed two potential solutions, one is to improve the flow mode of the plating solution, and the other is to add the reaction inhibitor, 2,2′-bipyridine. Finally, the combination of these two approaches successfully achieved an improved merging quality of the copper joints.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3