Fan-Out Wafer and Panel Level Packaging as Packaging Platform for Heterogeneous Integration

Author:

Braun Tanja,Becker Karl-Friedrich,Hoelck Ole,Voges Steve,Kahle Ruben,Dreissigacker Marc,Schneider-Ramelow Martin

Abstract

Fan-out wafer level packaging (FOWLP) is one of the latest packaging trends in microelectronics. Besides technology developments towards heterogeneous integration, including multiple die packaging, passive component integration in packages and redistribution layers or package-on-package approaches, larger substrate formats are also targeted. Manufacturing is currently done on a wafer level of up to 12”/300 mm and 330 mm respectively. For a higher productivity and, consequently, lower costs, larger form factors are introduced. Instead of following the wafer level roadmaps to 450 mm, panel level packaging (PLP) might be the next big step. Both technology approaches offer a lot of opportunities as high miniaturization and are well suited for heterogeneous integration. Hence, FOWLP and PLP are well suited for the packaging of a highly miniaturized energy harvester system consisting of a piezo-based harvester, a power management unit and a supercapacitor for energy storage. In this study, the FOWLP and PLP approaches have been chosen for an application-specific integrated circuit (ASIC) package development with integrated SMD (surface mount device) capacitors. The process developments and the successful overall proof of concept for the packaging approach have been done on a 200 mm wafer size. In a second step, the technology was scaled up to a 457 × 305 mm2 panel size using the same materials, equipment and process flow, demonstrating the low cost and large area capabilities of the approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference17 articles.

1. Handbook of Silicon Based MEMS Materials and Technologies (Micro and Nano Technologies);Tilli,2015

2. Fan-Out Wafer-Level Packaging;Lau,2018

3. Advances in Embedded and Fan-Out Wafer Level Packaging Technologies;Keser,2019

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3