Author:
Deng Bangliang,Fang Haifu,Jiang Ningfei,Feng Weixun,Luo Laicong,Wang Jiawei,Wang Hua,Hu Dongnan,Guo Xiaomin,Zhang Ling
Abstract
Research Highlights: Intensive nitrogen (N) application for agricultural purposes has substantially increased soil nitrous oxide (N2O) emissions. Agricultural soil has great potential in the reduction of N2O emissions, and applications of biochar and nitrification inhibitors may be useful for mitigating agricultural soil N2O emissions. Background and Objectives: Camellia oleifera Abel. is an important woody oil plant in China. However, intensive N input in C. oleifera silviculture has increased the risk of soil N2O emissions. As an important greenhouse gas, N2O is characterized by a global warming potential at a 100-year scale that is 265 times that of carbon dioxide. Thus, mitigation of soil N2O emissions, especially fertilized soils, will be crucial for reducing climate change. Materials and Methods: Here, we conducted an in situ study over 12 months to examine the effects of C. oleifera fruit shell-derived biochar and dicyandiamide (DCD) on soil N2O emissions from a C. oleifera field with intensive N application. Results: A three-fold increase of cumulative soil N2O emissions was observed following N application. Cumulative N2O emissions from the field with N fertilization were reduced by 36% and 44% with biochar and DCD, respectively. While N2O emissions were slightly deceased by biochar, the decrease was comparable to that by DCD. Conclusions: Results indicated that biochar may mitigate soil N2O emissions substantially and similarly to DCD under specific conditions. This result should be examined by prolonged and multi-site studies before it can be generalized to broader scales.
Funder
National Natural Science Foundation of China
Education Department of Jiangxi Province
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献