Bacterial and fungal inhibitor interacted impacting growth of invasive Triadica sebifera and soil N2O emissions

Author:

Lai Xiaoqin,Luo Laicong,Fang Haifu,Zhang Ling,Shad Nasir,Bai Jian,Li Aixin,Zhang Xi,Yu Yadi,Wang Hao,Siemann Evan

Abstract

Plant invasions affect biodiversity and seriously endanger the stability of ecosystems. Invasive plants show strong adaptability and growth advantages but are influenced by various factors. Soil bacteria and fungi are critical to plant growth and are important factors affecting plant invasions. Plant invasions also affect soil N2O emissions, but the effects of invasive plants from different population origins on N2O emissions and their microbial mechanisms are not clear. In this experiment, we grew Triadica sebifera from native (China) and invasive (USA) populations with or without bacterial (streptomycin) and/or fungal (iprodione) inhibitors in a factorial experiment in which we measured plant growth and soil N2O emissions of T. sebifera. Plants from invasive populations had higher leaf masses than those from native populations when soil bacteria were not inhibited (with or without fungal inhibition) which might reflect that they are more dependent on soil bacteria. Cumulative N2O emissions were higher for soils with invasive T. sebifera than those with a plant from a native population. Bacterial inhibitor application reduced cumulative N2O emissions but reductions were larger with application of the fungal inhibitor either alone or in combination with the bacterial inhibitor. This suggests that fungi play a strong role in plant performance and soil N2O emissions. Therefore, it is important to further understand the effects of soil microorganisms on the growth of T. sebifera and soil N2O emissions to provide a more comprehensive scientific basis for understanding the causes and consequences of plant invasions.

Funder

National Natural Science Foundation of China

Government of Jiangxi Province

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perspective Chapter: Plant Invasion and Ecosystem Litter Decomposition;Resource Management in Agroecosystems;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3