A Closed-Form Solution of Prestressed Annular Membrane Internally-Connected with Rigid Circular Plate and Transversely-Loaded by Central Shaft

Author:

Yang Zhi-Xin,Sun Jun-YiORCID,Zhao Zhi-Hang,Li Shou-Zhen,He Xiao-TingORCID

Abstract

In this paper, we analytically dealt with the usually so-called prestressed annular membrane problem, that is, the problem of axisymmetric deformation of the annular membrane with an initial in-plane tensile stress, in which the prestressed annular membrane is peripherally fixed, internally connected with a rigid circular plate, and loaded by a shaft at the center of this rigid circular plate. The prestress effect, that is, the influence of the initial stress in the undeformed membrane on the axisymmetric deformation of the membrane, was taken into account in this study by establishing the boundary condition with initial stress, while in the existing work by establishing the physical equation with initial stress. By creating an integral expression of elementary function, the governing equation of a second-order differential equation was reduced to a first-order differential equation with an undetermined integral constant. According to the three preconditions that the undetermined integral constant is less than, equal to, or greater than zero, the resulting first-order differential equation was further divided into three cases to solve, such that each case can be solved by creating a new integral expression of elementary function. Finally, a characteristic equation for determining the three preconditions was deduced in order to make the three preconditions correspond to the situation in practice. The solution presented here could be called the extended annular membrane solution since it can be regressed into the classic annular membrane solution when the initial stress is equal to zero.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3