A Refined Closed-Form Solution for the Large Deflections of Alekseev-Type Annular Membranes Subjected to Uniformly Distributed Transverse Loads: Simultaneous Improvement of Out-of-Plane Equilibrium Equation and Geometric Equation

Author:

Li Bo,Zhang Qi,Li Xue,He Xiao-TingORCID,Sun Jun-YiORCID

Abstract

The Alekseev-type annular membranes here refer to annular membranes fixed at outer edges and connected with a movable, weightless, stiff, con-centric, circular thin plate at inner edges, which were proposed originally by Alekseev for bearing centrally concentrated loads. They are used to bear the pressure acting on both membranes and plates, which was proposed originally in our previous work for developing pressure sensors. The pressure is applied onto an Alekseev-type annular membrane, resulting in the parallel movement of the circular thin plate. Such a movement can be used to develop a capacitive pressure sensor using the circular thin plate as a movable electrode plate of a parallel plate capacitor. The pressure applied can be determined by measuring the change in capacitance of the parallel plate capacitor, based on the closed-form solution for the elastic behavior of Alekseev-type annular membranes. However, the previous closed-form solution is unsuitable for annular membranes with too large deflection, which limits the range of pressure operation of the developed sensors. A new and more refined closed-form solution is presented here by improving simultaneously the out-of-plane equilibrium equation and geometric equation, making it possible to develop capacitive pressure sensors with a wide range of pressure operations. The new closed-form solution is numerically discussed in its convergence and effectiveness and compared with the previous one. Additionally, its beneficial effect on developing the proposed capacitive pressure sensors is illustrated.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3