Evaluation of the Groundwater Ecological Water Requirement in the Southeast Margin of Otindag Sandy Land Based on Allowable Groundwater Depth Drawdown

Author:

Zhang Gaoqiang1,Cheng Yutong2,Liu Haodong1,Xiao Chunlei1,Nie Hongfeng1,Zhu Zhenzhou1,Zhao Dan1,Zan Yourang3

Affiliation:

1. China Aero Geophysical and Remote Sensing Center for Natural Resources, Beijing 100083, China

2. Zhejiang Qianjiang Biochemistry Co., Ltd., Provincial Key Agricultural Enterprise Research Institute, Jiaxing 314400, China

3. Information Center (Hydrogeology Monitor and Forecast Center), Ministry of Water Resources, Beijing 100083, China

Abstract

Water resources in arid and semi-arid areas are limiting factors for ecosystem health and economic development. Therefore, an accurate and reasonable assessment of ecological water demand is crucial for efficient water resource utilization. In this study, we used vegetation coverage and groundwater depth to assess the state of vegetation growth in the Zhenglanqi, located at the southeastern edge of Otindag Sandy Land. Our results indicate the existence of a statistical power index function between vegetation coverage and groundwater depth scatter plots, where even minor changes in groundwater depth can have a significant impact on vegetation growth. In order to quantitatively assess the impact of subsidence on vegetation ecology, we propose a maximum allowable subsidence level under conditions that maintain normal ecological conditions, based on the initial subsidence depth and ecological guarantee rate. Our findings suggest that regions with shallower initial groundwater depths are more sensitive to changes in their environment than regions with deeper groundwater depths. The total groundwater consumption in the study area was 83 million cubic meters while maintaining an ecological guarantee rate of 80%; thus, while ensuring normal environmental conditions, human exploitation of shallow groundwater accounts for only 16 percent.

Funder

National Major Ecological Risk Monitoring and Assessment, Geological Survey Level II Project

Youth Innovation Fund of China Natural Resources Aeronautical Geophysical Exploration

Remote Sensing Center

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3