A Risk Assessment of the Vegetation Ecological Degradation in Hunshandake Sandy Land, China: A Case Study of Dabusennur Watershed

Author:

Chen Peng12,Ma Rong12,Si Letian23,Zhao Lefan24,Jiang Ruirui2,Dong Wanggang25

Affiliation:

1. Key Laboratory of Quaternary Chronology and Hydrological Environmental Evolution, China Geological Survey, Shijiazhuang 050061, China

2. The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China

3. School of Urban Geology and Engineering, Hebei GEO University, Shijiazhuang 050031, China

4. School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing 100083, China

5. Department of Geology, Northwestern University, Xi’an 710069, China

Abstract

In the context of climate change, it is essential for sustainable development to assess the risks associated with climate change and human-induced vegetation degradation. The Hunshandake Sandy Land provides a variety of ecosystem services and is a substantial ecological security barrier in the Beijing–Tianjin–Hebei area of China. This study used the Normalized Difference Vegetation Index (NDVI) to analyze the spatiotemporal variation trend in vegetation in the Dabusennur Watershed using linear trend analysis and the GeoDetector model to identify the main drivers of vegetation change in the watershed. Finally, the study assessed the risk of ecological degradation in the vegetation of the watershed. The results show that the NDVI in the study area has had a fluctuating trend in the last 22 years, and the change has been small. Precipitation and groundwater depth are the key factors affecting vegetation change. The NDVI reaches its maximum value when the groundwater depth is at 2.75 m. The vegetation ecology of the basin is relatively fragile, mainly with medium risk and large risk. To cope with the ecological risk of vegetation degradation caused by climate change, appropriate water use strategies should be formulated to ensure ecological water use. The present study’s outcomes provide the basis for developing ecological engineering solutions in the arid and semi-arid parts of northern China.

Funder

Basic Research Funds of Chinese Academy of Geological Sciences

Geological Survey Projects Foundation of the Institute of Hydrogeology and Environmental Geology

Investigation of Groundwater Environment in Ordos

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3