Ecological Water Requirement of Natural Vegetation in the Tarim River Basin Based on Multi-Source Data

Author:

Huang Mianting12,Mu Zhenxia12,Zhao Shikang12,Yang Rongqin12

Affiliation:

1. College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

2. Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China

Abstract

The Tarim River Basin is one of the most ecologically fragile regions around the world in the arid areas of Northwest China. The study of natural vegetation ecological water requirement (EWR) is the basis for the promotion of regional ecological conservation and sustainable development of ecosystems when extreme environmental events occur frequently, which is of great significance for the formulation of scientific and rational ecological conservation strategies. In the study, we improved the vegetation EWR calculation method by introducing a dynamic soil moisture limitation coefficient (KS) and a dynamic vegetation coefficient (KC) that is coupled with a resistance correction factor (Fr) based on the Penman-Monteith method and analyzed its spatio-temporal variation characteristics. Additionally, this study utilized the latitude of ecosystem resilience (LER) to clarify the thresholds for vegetation EWR throughout the growing season in the study area and to analyze the water surplus and deficit (WSD) at different threshold levels. The results of the study show that: (1) Over the past 21 years, the EWR for vegetation has shown a downward trend, with the change in EWR for arbor-shrub forests being more significant than that for grasslands. The average EWR for arbor-shrub forests and grasslands is 36.76 × 108 m3 and 459.59 × 108 m3, respectively. (2) The minimum ecological water requirement (EWRmin) and optimal ecological water requirement (EWRopt) for natural vegetation were 360.45 × 108 m3 and 550.10 × 108 m3, respectively. (3) In EWRmin conditions, the alpine plateau area as a whole showed a water surplus, and the plains area as a whole was in a state of water scarcity, but the precipitation in the study area as a whole could meet the basic survival needs of the vegetation. (4) In EWRopt conditions, the plains and local alpine plateau areas are in a state of water scarcity, the area of water scarcity is gradually increasing, and the regional precipitation is unable to fully realize the objectives of ecological conservation and vegetation restoration.

Funder

Key research and development projects of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

research program of Xinjiang Key Laboratory of Hydraulic Engineering Safety and Water Hazard Prevention and Control

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3