Pedestrian Detection under Parallel Feature Fusion Based on Choquet Integral

Author:

Yang Rong,Wang Yun,Xu YingORCID,Qiu Li,Li QiangORCID

Abstract

Feature-based pedestrian detection method is currently the mainstream direction to solve the problem of pedestrian detection. In this kind of method, whether the appropriate feature can be extracted is the key to the comprehensive performance of the whole pedestrian detection system. It is believed that the appearance of a pedestrian can be better captured by the combination of edge/local shape feature and texture feature. In this field, the current method is to simply concatenate HOG (histogram of oriented gradient) features and LBP (local binary pattern) features extracted from an image to produce a new feature with large dimension. This kind of method achieves better performance at the cost of increasing the number of features. In this paper, Choquet integral based on the signed fuzzy measure is introduced to fuse HOG and LBP descriptors in parallel that is expected to improve accuracy without increasing feature dimensions. The parameters needed in the whole fusion process are optimized by a training algorithm based on genetic algorithm. This architecture has three advantages. Firstly, because the fusion of HOG and LBP features is parallel, the dimensions of the new features are not increased. Secondly, the speed of feature fusion is fast, thus reducing the time of pedestrian detection. Thirdly, the new features after fusion have the advantages of HOG and LBP features, which is helpful to improve the detection accuracy. The series of experimentation with the architecture proposed in this paper reaches promising and satisfactory results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3