Robust Object Categorization and Scene Classification over Remote Sensing Images via Features Fusion and Fully Convolutional Network

Author:

Ghadi Yazeed YasinORCID,Rafique Adnan AhmedORCID,al Shloul Tamara,Alsuhibany Suliman A.ORCID,Jalal Ahmad,Park JeongminORCID

Abstract

The latest visionary technologies have made an evident impact on remote sensing scene classification. Scene classification is one of the most challenging yet important tasks in understanding high-resolution aerial and remote sensing scenes. In this discipline, deep learning models, particularly convolutional neural networks (CNNs), have made outstanding accomplishments. Deep feature extraction from a CNN model is a frequently utilized technique in these approaches. Although CNN-based techniques have achieved considerable success, there is indeed ample space for improvement in terms of their classification accuracies. Certainly, fusion with other features has the potential to extensively improve the performance of distant imaging scene classification. This paper, thus, offers an effective hybrid model that is based on the concept of feature-level fusion. We use the fuzzy C-means segmentation technique to appropriately classify various objects in the remote sensing images. The segmented regions of the image are then labeled using a Markov random field (MRF). After the segmentation and labeling of the objects, classical and CNN features are extracted and combined to classify the objects. After categorizing the objects, object-to-object relations are studied. Finally, these objects are transmitted to a fully convolutional network (FCN) for scene classification along with their relationship triplets. The experimental evaluation of three publicly available standard datasets reveals the phenomenal performance of the proposed system.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3