Choosing a Data Storage Format in the Apache Hadoop System Based on Experimental Evaluation Using Apache Spark

Author:

Belov Vladimir,Tatarintsev Andrey,Nikulchev EvgenyORCID

Abstract

One of the most important tasks of any platform for big data processing is storing the data received. Different systems have different requirements for the storage formats of big data, which raises the problem of choosing the optimal data storage format to solve the current problem. This paper describes the five most popular formats for storing big data, presents an experimental evaluation of these formats and a methodology for choosing the format. The following data storage formats will be considered: avro, CSV, JSON, ORC, parquet. At the first stage, a comparative analysis of the main characteristics of the studied formats was carried out; at the second stage, an experimental evaluation of these formats was prepared and carried out. For the experiment, an experimental stand was deployed with tools for processing big data installed on it. The aim of the experiment was to find out characteristics of data storage formats, such as the volume and processing speed for different operations using the Apache Spark framework. In addition, within the study, an algorithm for choosing the optimal format from the presented alternatives was developed using tropical optimization methods. The result of the study is presented in the form of a technique for obtaining a vector of ratings of data storage formats for the Apache Hadoop system, based on an experimental assessment using Apache Spark.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Application of Dance Teaching and Evaluation System Based on Big Data;International Journal of Web-Based Learning and Teaching Technologies;2023-12-22

2. Extremum in the problem of paired comparisons;Russian Technological Journal;2023-04-09

3. Data Engineering for the Factory of the Future;Applied AI and Multimedia Technologies for Smart Manufacturing and CPS Applications;2023-01-06

4. IoT Sensor Predictive Analysis System Using Apache Spark in Edge Cloud Environment;Advances in Computer Science and Ubiquitous Computing;2023

5. Tourist Attraction Recommendation Method Based on Megadata and Artificial Intelligence Algorithm;Wireless Communications and Mobile Computing;2022-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3