Data Engineering for the Factory of the Future

Author:

Oyekanlu Emmanuel1,Kuhn David1,Mulroy Grethel1

Affiliation:

1. Corning Incorporated, New York, USA

Abstract

In this chapter, the benefits that can be derived by using different existing data formats for industrial IoT (IIoT) and factory of the future (FoF) applications are analyzed. For factory floor automation, in-depth performance evaluation in terms of storage memory footprint and usage advantages and disadvantages are provided for various traditional and state-of-the-art data formats including: YAML, Feather, JSON, XML, Parquet, CSV, TXT, and Msgpack. Benefits or otherwise of using these data formats for cloud based FoF applications including for setting up robust Delta Lakes having very reactive bronze, silver, and gold data tables are also discussed. Based on extensive literature survey, this chapter provides the most comprehensive data storage performance evaluation of different data formats when IIoT and FoF applications are considered. The companion chapter, Part II, provides an extensive Pythonlibraries and examples that are useful for converting data from one format to another.

Publisher

IGI Global

Reference46 articles.

1. Accenture. (n.d.). Closing the Data-value Gap: How to Become Data Driven and Pivot to the New. White Paper, Accenture. https://www.accenture.com/_acnmedia/pdf-108/accenture-closing-data-value-gap-fixed.pdf

2. AckermanH.KingJ. (2019). Operationalizing the Data Lake – Building and Extracting Value from a Data Lake with a Cloud Native Data Platform. O’Reilly Media, Incorporated.

3. Ahmed, S., Ferzund, J., Rehman, A., Usman Ali, A., Sarwar, M., & Mehmood, A. (2017). Modern Data Formats for Big Bioinformatics Data Analytics. Int’l Journal of Advanced Computer Sc. & Applications (IJACSA), 8(4).

4. Apache Arrow. (2019). Feather File Format. Apache Arrow. https://arrow.apache.org/docs/python/feather.html#:~:text=There%20are%20two%20file%20format,available%20in%20Apache%20Arrow%200.17

5. Belov, V., Tatarintsev, A., & Nikulchev, E. (2021). Choosing a Data Storage Format in the Apache Hadoop System. Symmetry, 13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3