Author:
Tan Shuxin,Zhang Jicai,Egawa Takashi,Chen Gang
Abstract
The influence of quantum-well (QW) number on electroluminescence properties was investigated and compared with that of AlN electron blocking layer (EBL) for deep ultraviolet light-emitting diodes (DUV-LEDs). By increasing the QW number, the band emission around 265 nm increased and the parasitic peak around 304 nm was suppressed. From the theoretical calculation, the electron current overflowing to the p-type layer was decreased as the QW number increased under the same injection. Correspondingly, the light output power also increased. The increment of output power from 5 QWs to 10 QWs was less than that from 10 QWs to 40 QWs, which was very different from what has been reported for blue and near-UV LEDs. The parasitic peak was still observed even when the QW number increased to 40. However, it can be suppressed efficiently by 1 nm AlN EBL for LEDs with 5 QWs. The simulation showed that the insertion of a thin EBL increased the barrier height for electron overflow and the electron current in p-type layers decreased significantly. The results contributed to the understanding of behavior of electron overflow in DUV-LEDs.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献