AI and Text-Mining Applications for Analyzing Contractor’s Risk in Invitation to Bid (ITB) and Contracts for Engineering Procurement and Construction (EPC) Projects

Author:

Choi Su,Choi So,Kim Jong,Lee Eul-BumORCID

Abstract

Contractors responsible for the whole execution of engineering, procurement, and construction (EPC) projects are exposed to multiple risks due to various unbalanced contracting methods such as lump-sum turn-key and low-bid selection. Although systematic risk management approaches are required to prevent unexpected damage to the EPC contractors in practice, there were no comprehensive digital toolboxes for identifying and managing risk provisions for ITB and contract documents. This study describes two core modules, Critical Risk Check (CRC) and Term Frequency Analysis (TFA), developed as a digital EPC contract risk analysis tool for contractors, using artificial intelligence and text-mining techniques. The CRC module automatically extracts risk-involved clauses in the EPC ITB and contracts by the phrase-matcher technique. A machine learning model was built in the TFA module for contractual risk extraction by using the named-entity recognition (NER) method. The risk-involved clauses collected for model development were converted into a database in JavaScript Object Notation (JSON) format, and the final results were saved in pickle format through the digital modules. In addition, optimization and reliability validation of these modules were performed through Proof of Concept (PoC) as a case study, and the modules were further developed to a cloud-service platform for application. The pilot test results showed that risk clause extraction accuracy rates with the CRC module and the TFA module were about 92% and 88%, respectively, whereas the risk clause extraction accuracy rates manually by the engineers were about 70% and 86%, respectively. The time required for ITB analysis was significantly shorter with the digital modules than by the engineers.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3