Nesterov-accelerated Adaptive Moment Estimation NADAM-LSTM based text summarization1

Author:

Radhakrishnan P.1,Senthilkumar G.1

Affiliation:

1. Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur Campus, Kattankulathur, Chennai, Tamil Nadu, India

Abstract

Automatic text summarization is the task of creating concise and fluent summaries without human intervention while preserving the meaning of the original text document. To increase the readability of the languages, a summary should be generated. In this paper, a novel Nesterov-accelerated Adaptive Moment Estimation Optimization based on Long Short-Term Memory [NADAM-LSTM] has been proposed to summarize the text. The proposed NADAM-LSTM model involves three stages namely pre-processing, summary generation, and parameter tuning. Initially, the Giga word Corpus dataset is pre-processed using Tokenization, Word Removal, Stemming, Lemmatization, and Normalization for removing irrelevant data. In the summary generation phase, the text is converted to the word-to-vector method. Further, the text is fed to LSTM to summarize the text. The parameter of the LSTM is then tuned using NADAM Optimization. The performance analysis of the proposed NADAM-LSTM is calculated based on parameters like accuracy, specificity, Recall, Precision, and F1 score. The suggested NADAM-LSTM achieves an accuracy range of 99.5%. The result illustrates that the proposed NADAM-LSTM enhances the overall accuracy better than 12%, 2.5%, and 1.5% in BERT, CNN-LSTM, and RNN respectively.

Publisher

IOS Press

Reference25 articles.

1. A survey of automatic text summarization: Progress, process and challenges;Mridha;IEEE Access,2021

2. Arabic text summarization using arabert model using extractive text summarization approach;Abu Nada;International Journal of Academic Information Systems Research (IJAISR),2020

3. Abstractive text summarization using LSTM-CNN based deep learning;Song;Multimedia Tools and Applications,2019

4. Deep reinforcement and transfer learning for abstractive text summarization: A review;Alomari;Computer Speech & Language,2022

5. A topic modeled unsupervised approach to single document extractive text summarization;Srivastava;Knowledge-Based Systems,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3