Analysis of Natural and Power Plant CO2 Emissions in the Mount Amiata (Italy) Volcanic–Geothermal Area Reveals Sustainable Electricity Production at Zero Emissions

Author:

Sbrana Alessandro,Lenzi AlessandroORCID,Paci Marco,Gambini Roberto,Sbrana Michele,Ciani Valentina,Marianelli PaolaORCID

Abstract

Geothermal energy is a key renewable energy for Italy, with an annual electric production of 6.18 TWh. The future of geothermal energy is concerned with clarity over the CO2 emissions from power plants and geological contexts where CO2 is produced naturally. The Mt. Amiata volcanic–geothermal area (AVGA) is a formidable natural laboratory for investigating the relative roles of natural degassing of CO2 and CO2 emissions from geothermal power plants (GPPs). This research is based on measuring the soil gas flux in the AVGA and comparing the diffuse volcanic soil gas emissions with the emissions from geothermal fields in operation. The natural flux of soil gas is high, independently from the occurrence of GPPs in the area, and the budget for natural diffuse gas flux is high with respect to power plant gas emissions. Furthermore, the CO2 emitted from power plants seems to reduce the amount of natural emissions because of the gas flow operated by power plants. During the GPPs’ life cycle, CO2 emissions in the atmosphere are reduced further because of the reinjection of gas-free aqueous fluids in geothermal reservoirs. Therefore, the currently operating GPPs in the AVGA produce energy at a zero-emission level.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference68 articles.

1. Volcanological evolution of the Monte Amiata, Southern Tuscany: New geological and petrochemical data;Ferrari;Acta Vulcanol.,1996

2. New 40Ar-39Ar dating and revision of the geochronology of the Monte Amiata Volcano, Central Italy

3. The main characteristics of the lithosphere-asthenosphere system in Italy and surrounding regions

4. Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy)

5. Analisi del settore centro-meridionale del bacino pliocenico di Radicofani (Toscana Meridionale);Liotta;Boll. Soc. Geol. Ital.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3