Using Dark Fiber and Distributed Acoustic Sensing to Characterize a Geothermal System in the Imperial Valley, Southern California

Author:

Cheng Feng12ORCID,Ajo‐Franklin Jonathan B.23ORCID,Nayak Avinash3ORCID,Tribaldos Veronica Rodriguez3ORCID,Mellors Robert4ORCID,Dobson Patrick3ORCID,

Affiliation:

1. School of Earth Sciences Zhejiang University Hangzhou China

2. Department of Earth, Environmental, and Planetary Sciences Rice University Houston TX USA

3. Lawrence Berkeley National Laboratory Berkeley CA USA

4. Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography UC San Diego La Jolla CA USA

Abstract

AbstractThe Imperial Valley, CA, is a tectonically active transtensional basin located south of the Salton Sea; the area hosts numerous geothermal fields, including significant hidden hydrothermal resources without surface manifestations. Development of inexpensive, rugged, and highly sensitive exploration techniques for undiscovered geothermal systems is critical for accelerating geothermal power deployment as well as unlocking a low‐carbon energy future. We present a case study utilizing distributed acoustic sensing (DAS) and ambient noise interferometry for geothermal reservoir imaging, utilizing unlit fiber‐optic telecommunication infrastructure (dark fiber). The study exploits two days of passive DAS data acquired in early November 2020 over a ∼28‐km section of fiber from Calipatria, CA to Imperial, CA. We apply ambient noise interferometry to retrieve coherent signals from DAS records and develop a bin stacking technique to attenuate the effects from persistent localized noise sources and to enhance retrieval of coherent surface waves. As a result, we are able to obtain high‐resolution two‐dimensional (2D) S wave velocity (Vs) structure to 3 km depth, based on joint inversion of both the fundamental and higher overtones. We observe a previously unmapped high Vs and low Vp/Vs ratio feature beneath the Brawley geothermal system, which we interpret to be a zone of hydrothermal mineralization and lower porosity. This interpretation is consistent with a host of other measurements including surface heat flow, gravity anomalies, and available borehole wireline data. These results demonstrate the potential utility of DAS deployed on dark fiber for geothermal system exploration and characterization in the appropriate geological settings.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3