Picosecond Pulsed Laser Deposition of Metals and Metal Oxides

Author:

Dikovska Anna1,Atanasova Genoveva2ORCID,Dilova Tina2,Baeva Aleksandra2,Avdeev Georgi3,Atanasov Petar1,Nedyalkov Nikolay1

Affiliation:

1. Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

2. Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria

3. Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria

Abstract

In this work, we present the fabrication of thin films/nanostructures of metals and metal oxides using picosecond laser ablation. Two sets of experiments were performed: the depositions were carried out in vacuum and in air at atmospheric pressure. The subjects of investigation were the noble metals Au and Pt and the metal oxides ZnO and TiO2. We studied and compared the phase composition, microstructure, morphology, and physicochemical state of the as-deposited samples’ surfaces in vacuum and in air. It was found that picosecond laser ablation performed in vacuum led to the fabrication of thin films with embedded and differently sized nanoparticles. The implementation of the same process in air at atmospheric pressure resulted in the fabrication of porous nanostructures composed of nanoparticles. The ablation of pure Pt metal in air led to the production of nanoparticles with an oxide shell. In addition, more defects were formed on the metal oxide surface when the samples were deposited in vacuum. Furthermore, the laser ablation process of pure Au metal in a picosecond regime in vacuum and in air was theoretically investigated using molecular dynamics simulation.

Funder

Bulgarian National Science Fund

TwinTeam

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3