Abstract
AbstractFemtosecond laser fabrication has grown to be a major method of extreme manufacturing because of the extreme energy density and spatial and temporal scales of femtosecond lasers. The physical effects and the mechanism of interaction between femtosecond lasers and materials are distinct from those in traditional processes. The nonlinear and nonequilibrium effects of the interaction have given rise to new concepts, principles, and methods, such as femtosecond pulse durations are shorter than many physical/chemical characteristic times, which permits manipulating, adjusting, or interfering with electron dynamics. These new concepts and methods have broad application prospects in micro/nanofabrication, chemical synthesis, material processing, quantum control, and other related fields. This review discusses the cutting-edge theories, methods, measurements, and applications of femtosecond lasers to micro/nano-manufacturing. The key to future development of femtosecond laser manufacturing lies in revealing its fabrication mechanism from the electronic level and precisely regulating the electronic dynamics.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Materials Science (miscellaneous)
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献